Mind Map-4

@anjit

⊗ Cross, if magnetic field is directed perpendicular and into the plane of the paper

· Dot, if magnetic field is directed perpendicular and out of the plane of the paper.

Galvanometer to ammeter conversion: Low resistance or shunt connected in parallel

$$S - \left(\frac{I_g}{I - I_g}\right)G$$

Reading of ammeter is always less than actual current in the circuit.

Galvanometer to voltmeter conversion: High resistance in

series
$$R = \frac{V}{I_g} - G$$

Greater the resistance of voltmeter, more accurate is reading.

Magnetic fields die to a current carrying wire at a point which lies at a perpendicular distance

r from the wire
$$B = \frac{\mu_0}{4\pi} \cdot \frac{1}{r} (\sin\phi_1 + \sin\phi_2)$$

or,
$$B = \frac{\mu_0}{4\pi} \cdot \frac{1}{r} (\cos \alpha - \cos \beta)$$

For a wire of finite length Magnetic field at a point which lies on perpendicular bisector of

finite length wire
$$B = \frac{\mu_0}{4\pi} \cdot \frac{1}{r} (2\sin\phi)$$

For a wire of infinite length When the linear conductor is of infinite length and the point lies near the centre of the conductor.

$$B = \frac{\mu_0}{4\pi} \frac{i}{r} \left(\sin 90^{\circ} + \sin 90^{\circ} \right) = \frac{\mu_0 2i}{4\pi r}$$

For a wire of semi-infinite length When the linear conductor is of infinite length and the point lies near the end

$$B = \frac{\mu_0}{4\pi} \cdot \frac{i}{r} \left(\sin 90^\circ + \sin 0^\circ \right) = \frac{\mu_0 i}{4\pi r}$$

For axial position of wire When point lies on axial position of current carrying conductor then magnetic field B = 0

Magnetic field due to a straight current carrying conductor of

infinite length
$$B = \frac{\mu_0 I}{2\pi R}$$

Biot-Savart's law

Magnetic field due to current carrying element, $dB = \frac{\mu_0}{4\pi} \frac{Idl \sin \theta_n}{r^2}$

It is an imverse-square law and is the magnetic analogue of coulomb's law

Magnetic field due to a current carrying circular loop

On the axis of circular loop

 $B = \frac{\mu_0 N I a^2}{2(r^2 + a^2)^{3/2}}$ If $a \gg r, B = \ell$ $\frac{\mu_0}{4\pi} \cdot \frac{2NiA}{a^3}$

At the centre of circular $loop B = \frac{\mu NI}{2R}$

Magnetic field due to circular current carrying

are $B = \frac{\mu_0 I}{2r}$

Magnetic field due to a solenoid. Inside a long solenoid $B = \mu_0 nI$

At a point on one end $B = \frac{\mu_0 nI}{2}$

n = number of turns per unit length

Ampere's circuital law

 $\oint Bdl = \mu_0 \Sigma i$ Absolute permeability of air or vacuum.

$$\mu_0 = 4\pi \times 10^{-7} \frac{Wb}{Amp - metre}$$

Magnetic field due to toroid

B =
$$\mu_0 nI$$
; $n = \frac{N}{2\pi r}$

Magnetic field due to a cylindrical

Outside the cylinder Magnetic field $B_{out} = \frac{\mu_0 i}{2\pi r}$ and $B_{surface} = \frac{\mu_0 i}{2\pi r}$

Inside the hollow cylinder

Magnetic field inside the hollow cylinder is zero.

Direction of magnetic field-Depends upon the direction of

current. Right hand thumb rulethumb points in the direction of

current, curling of fingers represents direction of magnetic field

Magnetic field space in the surrounding of a magnet or any current carrying conductor in which its magnetic influence can be experienced.

> **MOVING CHARGES AND MAGNETISM**

Magnetic field within the solenoid is uniform and parallel to the axis of solenoid

Amperic law is analogous to Gauss's

 $\text{law } \oint \vec{E} \cdot d\vec{s} = \frac{q}{\epsilon_0}$ This law is valid for

symmetrical current distributions and is based on the principle of electromagnetism.

Toroid is like an endless cylindrical solenoid number of turns per unit length $n = \frac{N}{2\pi r}$

Inside the solid cylinder

Magnetic field $B = \frac{\mu_0}{2\pi} \cdot \frac{ir}{R^2}$

Inside the thick portion of hollow cylinder:

 $B = \frac{\mu_0 i}{2\pi r} \cdot \frac{(r^2 - R_1^2)}{2\pi r (R_2^2 - R_1^2)}$

Motion of a charged particle in a uniform magnetic field follows a circular path, radius

Bq

 $MV sin\theta$

Force on a conductor Lorentz force

carrying current in a uniform magnetic field, $F = I Bl \sin \theta$ $F = I (B \times l)$

Force between two parallel current carrying conductors

 $F = \frac{\mu_0}{4\pi} \cdot \frac{2I_1I_2}{r} \times l$

If two charges q₁, q₂ are moving with velocities V₁ and V₂ and at any instant distance between then is 'r'

$$F_{\text{magnetic}} = \frac{\mu_0}{4\pi} \frac{q_1 q_2 v_1 v_2}{r^2}$$

For charges moving with same velocity $F_{\text{magnetic}} < F_{\text{electrostatic}}$

Force acting on a charged particle moving in a uniform magnetic field F = qVB $\sin \theta = q(V \times B)$

Magnetic force,

 $\vec{F}_m = q(\vec{v} \times \vec{B})$

Zero force i.e., F = 0 on a charged particle, if field $\vec{B} = 0$ charge q = 0charge is at rest, v = 0when $\theta = \theta^{\circ}$ or 180°

• When, \vec{V} , \vec{E} , \vec{B} are all collinear $F_{\text{magnetic}} = 0$ $\vec{F}_e = q\vec{E} \Rightarrow \vec{a} = \frac{\vec{F}}{m} = \frac{q\vec{E}}{m}$ $F = q[\vec{E} + \vec{V} \times \vec{B}]$ Electric force, $\vec{F}_e = q\vec{E}$

• When, \vec{V} , \vec{E} and \vec{B} are mutually perpendicular $\vec{F} = \vec{F}_e \Rightarrow \vec{F}_m = 0$ $\Rightarrow a = \frac{\vec{F}}{} = 0$

Direction of force If two conductors carry current in same direction force between them is attractive and if carry currents in opposite direction force between them is repulsive

Torque experienced by a current carrying loop in a uniform magnetic field $\vec{T} = MB \sin \theta \hat{n}$ $= \mathbf{M} \times \mathbf{B}$

- Torque experienced is zero when $\theta = 0$ i.e., plane of the coil is perpendicular to the field.
- Torque is maximum when $\theta = 90^{\circ}$ i.e., plane of the coil is parallel to the field, $T_{max} = NBiA$
- Work done, W = MB(1 cos θ)

$$W_{max}$$
, if $\theta = 180^{\circ}$
 $W_{max} = 2MB$

 Potential energy. $U = -MB \cos \theta \Rightarrow U = -\vec{M}.\vec{B}$

Trajectory of a particle is a straight, line, if the direction of a particle moving with velocity \vec{v} parallel or antiparallel to \vec{B} i.e., $\theta = 0$ or $\theta = 180^{\circ}$

> Trajectory of a particle is a circle of particle velocity \vec{v} perpendicular to \vec{B} i.e., $\theta = 90^{\circ}$ and radius of path,

$$r = \frac{mV}{qB} = \frac{1}{B}\sqrt{\frac{2mV}{q}}$$

Trajectory of a particle is helical if a changed particle is moving at an angle to the field other than 0°, 90°, 180° and

radius of path
$$r = \frac{m(V \sin \theta)}{qB}$$

Cyclotron.

A device used to accelerate positively charged particles like α-particles, deuterons, etc. to acquire sufficient energy to carry out nuclear disintegration.

• Cyclotron frequency $v = \frac{qB}{2\pi m}$

Cyclotron frequency also known as magnetic resonance frequency

- Time period, $T = \frac{2\pi m}{qB}$
- Maximum energy gained by charged particle

$$E_{\text{max}} = \left(\frac{q^2 B^2}{2m}\right) r^2$$